Next-generation sequencing technologies for gene expression profiling in plants.
نویسنده
چکیده
Next-generation sequencing (NGS) provides a better approach to gene expression profiling with several advantages. The power of NGS along with novel molecular techniques and computational tools allow the researchers to perform the gene expression profiling to reveal transcriptional complexity of an organism and answering several biological questions. Although many studies for gene expression profiling related to various aspects have been performed in animal systems revealing unprecedented levels of complexity of transcriptomes, their use is still limited in plant biology. This review describes the use of NGS technologies with respect to gene expression profiling, bioinformatics challenges associated with data analysis and advances made so far in the plant biology research. We anticipate many more studies in recent future, which will surely advance our understanding of the complexity of plant genomes.
منابع مشابه
I-37: Establishing High Resolution Genomic Profiles of Single Cells Using Microarray and Next-Generation Sequencing Technologies
The nature and pace of genome mutation is largely unknown. Standard methods to investigate DNA-mutation rely on arraying or sequencing DNA from a population of cells, hence the genetic composition of individual cells is lost and de novo mutation in cell(s) is concealed within the bulk signal. We developed methods based on (SNP-) arraying and next-generation sequencing of single-cell whole-genom...
متن کاملNext Generation Sequencing Technologies: The Doorway to the Unexplored Genomics of Non-Model Plants
Non-model plants i.e., the species which have one or all of the characters such as long life cycle, difficulty to grow in the laboratory or poor fecundity, have been schemed out of sequencing projects earlier, due to high running cost of Sanger sequencing. Consequently, the information about their genomics and key biological processes are inadequate. However, the advent of fast and cost effecti...
متن کاملApplications of next-generation sequencing technologies in functional genomics.
A new generation of sequencing technologies, from Illumina/Solexa, ABI/SOLiD, 454/Roche, and Helicos, has provided unprecedented opportunities for high-throughput functional genomic research. To date, these technologies have been applied in a variety of contexts, including whole-genome sequencing, targeted resequencing, discovery of transcription factor binding sites, and noncoding RNA expressi...
متن کاملHomoplasmic Stability and Cytoplasmic Inheritence of DARPin G3 Scaffold Protein in Generative and Vegetative Propagation of Transplastoic Tobacco Plants
Plastid engineering gives numerous benefits for the next generation of transgenic technology, consisting of the convenient use of transgene stacking and the production of high expression levels of recombinant proteins. Designed ankyrin repeat proteins (DARPin) are relatively small non-immunoglobulin scaffold proteins that bind to their specific target with high affinity. The G3 is a type of DAR...
متن کاملTissue-specific transcript annotation and expression profiling with complementary next-generation sequencing technologies
Next-generation sequencing is excellently suited to evaluate the abundance of mRNAs to study gene expression. Here we compare two alternative technologies, cap analysis of gene expression (CAGE) and serial analysis of gene expression (SAGE), for the same RNA samples. Along with quantifying gene expression levels, CAGE can be used to identify tissue-specific transcription start sites, while SAGE...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Briefings in functional genomics
دوره 11 1 شماره
صفحات -
تاریخ انتشار 2012